Shortest path problem in rectangular complexes of global nonpositive curvature
نویسندگان
چکیده
CAT(0) metric spaces constitute a far-reaching common generalization of Euclidean and hyperbolic spaces and simple polygons: any two points x and y of a CAT(0) metric space are connected by a unique shortest path γ(x, y). In this paper, we present an efficient algorithm for answering two-point distance queries in CAT(0) rectangular complexes and two of theirs subclasses, ramified rectilinear polygons (CAT(0) rectangular complexes in which the links of all vertices are bipartite graphs) and squaregraphs (CAT(0) rectangular complexes arising from plane quadrangulations in which all inner vertices have degrees ≥ 4). Namely, we show that for a CAT(0) rectangular complex K with n vertices, one can construct a data structure D of size O(n) so that, given any two points x, y ∈ K, the shortest path γ(x, y) between x and y can be computed in O(d(p, q)) time, where p and q are vertices of two faces of K containing the points x and y, respectively, such that γ(x, y) ⊂ K(I(p, q)) and d(p, q) is the distance between p and q in the underlying graph of K. If K is a ramified rectilinear polygon, then one can construct a data structure D of optimal size O(n) and answer two-point shortest path queries in O(d(p, q) log ∆) time, where ∆ is the maximal degree of a vertex of G(K). Finally, if K is a squaregraph, then one can construct a data structure D of size O(n logn) and answer two-point shortest path queries in O(d(p, q)) time.
منابع مشابه
Algorithms for distance problems in planar complexes of global nonpositive curvature
CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex K with n vertices, one can con...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملFilling invariants of systolic complexes and groups
Systolic complexes were introduced in Januszkiewicz–Świa̧tkowski [12] and, independently, in Haglund [10]. They are simply connected simplicial complexes satisfying a certain condition that we call simplicial nonpositive curvature (abbreviated SNPC). The condition is local and purely combinatorial. It neither implies nor is implied by nonpositive curvature for geodesic metrics on complexes, but ...
متن کاملTwo optimal algorithms for finding bi-directional shortest path design problem in a block layout
In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...
متن کاملThe Complexity of the Two DimensionalCurvature - Constrained Shortest - Path
The motion planning problems for non-holonomic car-like robots have been extensively studied in the literature. The curvature-constrained shortest-path problem is to plan a path (from an initial connguration to a nal connguration, where a connguration is deened by a location and an orientation) in the presence of obstacles, such that the path is a shortest among all paths with a prescribed curv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 46 شماره
صفحات -
تاریخ انتشار 2013